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FOREWORD

The work reported in this document was performed by The MITRE
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mand under Contract AF 19(628)-5165.
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Project Officer

Development Engineering Division
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ABSTRACT

A numerical technique for evaluation of the geometrical optics radar
cross section of a general doubly curved convex conducting body is described.
A surface fitting method is employed where unique surfaces are established
utilizing the Schmidt orthogonalization technique for matrix inversion. In
this manner, linearly dependent data points are discarded prior to their inclu-
sion in the surface fitting procedure.
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SECTION 1

INTRODUCTION

A technique is presented for the numerical evaluation of the
geometrical optics mono-static radar cross section of a general
doubly curved convex body. This computer program requires as inputs
the cartesian coordinates of a number of points of the given surface.
Provided as outputs are the scattered amplitude for prescribed inci-

dent directions (6,9).



SECTION II

DISCUSSION

ANALYTIC PROCEDURE

The calculation of the geometrical optics radar cross section
of a general doubly curved convex body requires a calculation of the
gaussian curvature as a function of normal direction of the given

surface,

o (8,0) = K"t (0,8) (1)

where K(6,p) is the gaussian curvature where the surface normal

is at angles © and ® . Most direct approaches to the calculation
of gaussian curvature entail an evaluation of first and second
derivatives at various points on the surface with a corresponding
finité difference approach in the case of numerical approximation.
In order to achieve acceptable accuracies with finite differences,
however, a large number of closely spaced points describing the
surface are necessary. This difficulty can be circumvented by a
surface fitting procedure which allows the gaussian curvature to be

calculated directly from the fitted surface.



Figure 1. General Convex Body

Consider the general convex surface, denoted by S, shown in

©  the surface, S',

Figure 1. For a viewing direction of 9 = 0
in the neighborhood of the specular point may be approximated by a
quadric surface (for this viewing direction the specular point is that
point with the largest z value)., In practice, S' can be approximated
by fitting the set of cartesian points in the vicinity of the specular

point to a general quadric surface.

To describe S' by a quadric, nine coefficients are required;

these coefficients in the case of a general ellipsoid are related

to the 1) three semi-axes of the ellipsoid, 2) the Euler angles



describing the orientation of the ellipsoid and 3) the coordinate of

the ellipsoid center, As a result, a minimum of nine surface points

(xi’ yi, zi, i =1 - 9) must be fitted to the equation:

g(x,y,z) = a;x? + agy2 + aaz2 + agxXy + agyz + agxz + ayx + agy + agz-1 = 0
(2)

The unknown coefficients in Equation (1) may be determined by solution

of the following matrix equation:
RA =1 (3)

where I 1is a column matrix with each entry unity, and

-al—\
agz

2
X a zZ DYL iz X2z - X700y 2y




Equation (3) may be solved for A provided that R-1 is non-
singular, The cases where the inverse of R is singular indicate that
no unique surface exists for the given set of nine points. In these
cases the multiple solutions involve degenerate surfaces (planes,
intersection of planes, etc.,) in addition to the actual quadric
surface. One such example might be nine points lying on a spheroid
but whose z values are identical; obviously the plane agz-1 = 0
satisfies the nine points equally well, Since it is extremely difficult
to predict the presence of multiplicative solutions on the basis of

the x,y,z points themselves, the following orthogonalization technique

has been employed for the solution of Equation (2).
If we consider the individual rows of R as being nine-component

vectors,

" A " A & A 2 A A A A A A
= Gy FEaxX Y, hegy. .z, + eyx,2. '+ X, + Lt z,
Ri eLx, + ey, + ez i 4 1y1 5y1 i X &, & i esyl =] i

Lom b, 2449

we may form a new matrix, by linear transformation of R, such that

the new row "vectors" are orthonormal, This is most easily done by
—

the Schmidt orthogonalization technique where in terms of Ri the new

vectors are given by:

N, =R / P (4)



R N N, .+ ..+B, ,N
5 Bt By o mifen ¥ By v *5g 1M 4
i e ) -
! N. + B, . N, + ..
R, * Bi’(l-l) i-1 i,(i-2)"i-2 b B1’1N1
where
B powisi By By
i,] i J
We may now write Equation (3) in terms of the new matrix N,
NA = C (5)
where C is formed by the same linear transformations as N, i.e.,
1+ B, o ci-l + Bi,(i-Z)Ci-Z + ..+ Bi,lci
C. = 1-’(1 )
i - e - 5] (6)
B ey da * B - o oon By 1y
Since the inverse of N is simply given as its transpose we have,
A=NC . (7)

The advantage of solving the original set of simultaneous
equations in this manner is that dependent equations are exposed
before their inclusion in the solution of A, In the construction
of N any point (xi, Y Zi) which will produce a non-unique surface

(i.e. result in a dependent equation) will yield a null vector for ﬁi'



As a result of this indication, linearly dependent equations can be
discarded and additional surface points introduced until nine linearly
independent equations result,

For a general convex surface, g (x,y,z) = 0, the gaussian

(2]

A o
curvature at the point n =z (8 = 0°) is easily shown to be

W ] e =

| gradg|?

(8)

where all derivatives are evaluated at the specular point., For the

fitted quadric given by Equation (2) we have:

2
bajaz - a,

K = (9

[2aaz + agy + agx + ae]2
specular point

What remains to be determined is the exact location of the
specular point Xos Yoo and z . Since we are interested in the specular

point for 6 = 0, the following simultaneous equations may be used:

g(x,y,z)

o)

Sﬁ =2a1Xx + ayy +agz+ a =0 (10)
o8 _ =0

3y 2agy + agx + agz + as



NUMERICAL PROCEDURE

The analytic results previously described have been incorporated
in a computer program designed to provide the geometrical optics
radar cross section for an arbitrary convex body at prescribed
incident angles, A flow diagram indicating the necessary subroutines
and their purpose is shown in Figure 2. A description of the required
steps is given as follows:

a) A series of x, y, z points, referenced to a fixed origin
located within the body, describing the shape are necessary as inputs.
These points may be coarsely spaced when the curvature of the body
is small, the density of points increasing for larger curvature
regions. Points describing the body may be randomly chosen on the
surface; it is only necessary that the series of points provide a
reasonable representation of the body.

b) The initial step allows the body to be rotated to any
prescribed viewing direction. This is accomplished by transforming
the x, y, z coordinates of the input points such that the new z-direction

coincides with the given viewing direction., It is assumed that the

o

: ]

original points are given such that the z-axis refers to 6 =0
and ¢ = 0° is the equation of the x-z half plane, hence for this
incident direction no transformation is required., As a matter of
procedure the computer program fixes the ¢ orientation and performs
the radar cross section calculations to follow for each of the

prescribed 8 values. Consequently, for each of these calculations
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the input points are rotated by the appropriate 8 value (only the x

and z values of the input points are altered for these transformations),
Having completed this series of calculations the input points are
returned to the 6 = 0° position and rotated to a new ¢ orientation

(in this case altering the x and y values), the process then continuing
for the set of © values.

c) At this stage the orthonormal row vectors of the N matrix
are formed, These vectors are formed one at a time utilizing surface
points from the previous step in order of their z magnitude. Since
the specular point, by definition, is that point on the surface with
largest z magnitude (the viewing direction is always along the z-axis)
this process guarantees that those points nearest in location to the
specular point will be fitted to the quadric, If at any time a
dependent point is determined (such a point will produce a vector ﬁi’
with magnitude less than some established minimum) this point is
discarded and replaced with the next largest (in z-value) point.

As a result, nine independent equations, and hence a unique quadric
are guaranteed, Simultaneously, the right hand of Equation (4) is
formed in accordance with Equations (3) and (5).

d) At this point, by straightforward matrix multiplication, the
coefficients associated with the quadric surface g(x,y,z) = 0 are
determined., These nine coefficients are then used for determination
of the specular point associated with the now determined surface

(for "6 = 00) as follows:
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e) The x,y,z coordinates of the specular point are determined
by solution of Equation (10). These three equations, two linear and
one non-linear, can be solved by using the two linear equations for
determining x and y in terms of z and then solving the resultant

quadratic equation for z.

f) Equation (9) may now be used for determining the gaussian
curvature [and hence the desired radar cross section from equation

(1)] for the aspect angles determined from step (a).

g) At this juncture a new set of aspect angles can be specified
resulting in the transformation described in (a) with steps (b)
through (f) being repeated in identical fashion. 1In this manner the
radar cross section can be conveniently determined for the full set

of viewing directions in 6 and ¢
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SECTION III

NUMERICAL RESULTS

For the purposes of demonstration, radar cross section calcula-
tions have been computed for a 2:1 prolate spheroid. Since this
shape is a special case of an ellipsoid, the surface fitting, in
principal, can be handled exactly by the method described. The results,
nevertheless, do indicate the accuracy lost in the matrix inversion
and specular point calculations and the efficiency of the program

in general.

Thirty-seven points using 6 digit accuracy were used to describe

the spheroid; these points are listed in Table I.

The resulting radar cross section is shown in Table IL. These
results are listed together with results of an exact radar cross

section computation[SJ and one using exact geometrical optics.

A comparison of columns one and two in Table II indicates that
1-2 digits are lost in the process of curve fitting. Higher accuracy,
however, could be achieved either by using more digits for the input
points or by using a higher density of points to describe the spheroid.
The nature of the geometrical optics approximation, however, does not

warrant a higher accuracy than that shown in Table II.
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Table 1

2:1 Prolate Spheroid

X y z
.000000 .000000 2,000000
.100000 .100000 1.979900
.100000 .100000 1.979900
.000000 =.297909 1,909190
.210654 -.210654 1.909190
+297909 .000000 1.909190
.210654 -.210654 1.909190
,250000 -,250000 1.870830
.250000 .250000 1,870830
.000000 -.500000 1.732050
.000000 .500000 1.732050
.500000 -.500000 1.414210
.500000 .500000 1,414210
.500000 .500000 1.414210
.500000 -.500000 1.414210
.707107 .000000 1.414210
.000000 .707107 1.414210
,000000 -.707107 1.414210
.000000 .000000 .000000
.000000 -.707107 -1.414210
.000000 .707107 -1,414210
.707107 .000000 -1,414210
.500000 -.500000 -1.414210
.500000 .500000 -1.414210
.500000 .500000 -1.414210
. 500000 -.500000 -1.414210
.000000 .500000 -1.732050
.000000 -.500000 -1,732050
.250000 .250000 -1.870830
.250000 -.250000 -1.870830
.210654 -.210654 -1.909190
.297909 .000000 =1.,909190
.210654 -.210654 -1.909190
.000000 -.297909 -1.909190
.100000 .100000 -1.979900
. 100000 .100000 -1.979900
.000000 .000000 -2,000000

13




Table I1

Radar Cross Section Results

oc/m b2
Computed Exact Exact*
Aspect Geometrical Geometrical
Angle Optics Optics Horizontal Vertical
o .250022 .250000 .2514 .2514
10 .261715 .261706 .3018 .3272
20 .300357 .300399 .3730 .2932
30 .378677 .378698 . 3286 L4204
40 .524883 .524925 .5576 .5388
50 + 797513 « 197537 .7768 .8016
60 1.30620 1.30612 1.360 1.313
70 2,19221 2.19180 2.173 2.140
80 3.36393 3.36394 3.424 3.280
90 4.00001 4,00000 4,080 3.860

*Calculated at kb = 10

The simplicity of the geometrical optics computation has allowed
the data in column one to be generated in about 10 seconds of computer
time. In addition, the geometrical optics approximation applies in a
region of body size where exact calculations tend to become impractical

requiring long running times.
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